Manganese Antimonate: Facile solid state synthesis, characterization and its application for Biginelli reactions

Document Type : Research Paper


1 Department of Chemistry, Semnan University, Semnan 35351-19111, Iran

2 Faculty of physics, Semnan University, Semnan 35131-19111, Iran


Nanostructured Mn2Sb2O7 powders were synthesized via stoichiometric1:1 Mn:Sb molar ratio solid state reaction at different reactions temperatures for 8 h using MnSO4.H2O and Sb2O3 as raw materials. The synthesized materials were characterized by powder X-ray diffraction (PXRD) technique. Structural analyses were performed by the FullProf program employing profile matching with constant scale factors. The results showed that the patterns had a main monoclinic Mn2Sb2O7 crystal structure with space group P21. The morphologies of the synthesized materials were studied by field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) which showed that the Mn2Sb2O7 samples had flower like and spherical particles morphologies. Ultraviolet – Visible spectroscopy (UV-Vis) showed that the band gap was about 2.85 eV. The most pure sample (S6) was used as catalyst in the one-pot synthesis of the heterocyclic compounds 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) in Biginelli reactions. Experimental design was used to find the optimized reaction conditions.


[1] H. Jiang, W. You, X. Liu, J. Liao, P. Wang, B. Yang, B. Mater. Sci., 36, 1147 (2013).
[2] M. B. Johnson, D. D. James, A. Bourque, H. A. Dabkowska, B. D. Gaulin, M. A. White, J. Solid State Chem., 182, 725 (2009).
[3] S. A. Kramer, H. L. Tuller, Solid State Ion., 82, 15 (1995).
[4] T. Norby, J. Mater. Chem., 11, 11 (2001).
[5] F. W. Shi, X. J. Meng, G. S. Wang, T. Lin, J. H. Ma, Y. W. Li, J. H. Chu, Phys. B: Condens. Matter., 370, 277 (2005).
[6] G. R. Lumpkin, M. Pruneda, S. Rios, K. L. Smith, K. Trachenko, K. R. Whittle, N. J. Zaluzec J. Solid State Chem., 180, 1512 (2007).
[7] Z. G. Liu, J. H. Ouyang, Y. Zhou, B. Mater. Sci., 32, 603 (2009).
[8] R. Vassen, D. Sebold, D. Stoever, Ceram. Eng. Sci. Proc., 28, 27 (2008).
[9] W. Ren, S. Trolier-McKinstry, C. A. Randall, T. R. Shrout, J. Appl. Phys., 89, 767 (2001).
[10] S. G. Phadnis, R. Rajan, K. S. Kulkarni, B. Mater.Sci., 2, 139 (1983).
[11] K. Krishnankutty, K. R. Dayas, B. Mater. Sci., 6, 907 (2008).
[12] B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. Yeo, S. M. Haile, J. K. Stalick, J. D. Jorgensen, Solid State Ion., 129, 111 (2000).
[13] R. C. Ewing, W. J. Weber, J. Lian, J. Appl. Phys., 95, 5949 (2004).
[14] K. R. Whittle, L. M. D. Cranswick, S. A. T. Redfern, I. P. Swainson and G. R. Lumpkin J. Solid State Chem., 182, 442 (2009).
[15] J. Hou, S. Jiao, H. Zhu, R.V. Kumar, J. Solid State Chem., 184, 154 (2011).
[16] M. Muthuraman, N. Arul Dhas, K. C. Patil, B. Mater. Sci., 17, 977 (1994).
[17] Z. S. Chen, W. P. Gong , T. F. Chen, S. L. Li, B. Mater. Sci., 34, 429 (2011).
[18] M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, B. Mater. Sci., 2, 201 (1980).
[19] M. A. Subramanian, A. Clearfield, A. M. Umarji, G. K. Shenoy, G. V. Subba Rao, J. Solid State Chem., 52, 124 (1984).
[20] H. G. Scott, Z. Kristallogr., 190, 41 (1990).
[21] A. F. Wells, Structural Inorganic Chemistry, 5th Edition, Oxford University Press, Oxford (1984).
[22] F. Brisse, D. J. Stewart, V. Seidl, O. Knop, Can. J. Chem., 50, 3648 (1972).
[23] H. D. Zhou, C. R. Wiebe, A. Harter, N. S. Dalal, J. S. Gardner, J. Phys. Condens Matter., 20, 325201 (2008).
[24] L. Chelazzi, T. B. Ballaran, G. O. Lepore, L. Bindi, P. Bonazzi, Solid State Sci., 21, 85 (2013).
[25] H. G. Scott, J. Solid State Chem., 66, 171 (1987).
[26] H. D. Zhou, C. R. Wiebe, J. A. Janik, B. Vogt, A. Harter, N. S. Dalal, J. S. Gardner, J. Solid State Chem., 183, 890 (2010).
[27] P. Biginelli, Ber. Dtsch. Chem. Ges., 24, 1317 (1891).
[28] K. Singh, D. Arora, S. Singh, Mini Rev. Med. Chem., 9, 95 (2009).
[29] S. Khademinia, M. Behzad, H.S. Jahromi, RSC Adv., 5, 24313(2015).
[30] A. Wang, X. Liu, Z. Su, H. Jing, Catal. Sci. Technol., 4, 71 (2014).
[31] J. Javidi, M. Esmaeilpour, F. N. Dodeji, RSC Adv., 5, 308 (2015).
S. L. Jian, V. V. D. N. Prasad, B. Sain, Cat. Com., 9, 499 (2008).
[33] Kh. Pourshamsian. Int. J. Nano Dimens., 6, 99 (2015).
[34] J. Safari,S.G. Ravandi, RSC Adv., 4, 11486 (2014).
[35] J. Safari, S. G. Ravandi, New J. Chem., 38, 3514 (2014).
[36] J. MondalT. Sena, A. Bhaumik, Dalton Trans., 41, 6173 (2012).
[37] S. Khademinia, M. Behzad, A. Alemi, M. Dolatyari, S. M. Sajjadi, RSC Adv., 5, 71109 (2015).
[38] S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc., 60, 309 (1938).
[39] E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951).
[40] T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, A. Nystrom, J. Pettersen, R. Bergman. Chemometr.Intell.Lab., 42, 3 (1998).
[41] R. Carlson, J. E. Carlson, Design and Optimization in Organic Synthesis; Elsevier: Amsterdam, (2005).
[42] G. E. P. Box, N. R. Draper, Empirical Model-Building and Response Surfaces; Wiley: New York, (1987).
[43] D. C Peets, H. Sim, M. Avdeev, J. Physics: Conf. Series. 807, 042002 (2017)
[44] Z. Lei, L. P. Cheng, L. Yin, Mater Lett., 75, 29 (2012).
[45] J. Pascual, J. Camassel, M. Mathieu, Phys. Rev. B: SolidState, 18, 5606 (1978).
[46] Comprehensive Chemometrics Chemical and Biochemical Data Analyses. Vol. 1, chapter 12, page 354 (2009).